- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Abadie, Cyril (1)
-
Abouchami, Wafa (1)
-
Achterberg, Eric P. (1)
-
Agather, Alison (1)
-
Aguliar-Islas, Ana (1)
-
Alexandra Weigand, M. (1)
-
Andersen, Morten (1)
-
Anderson, Robert F. (1)
-
Archer, Corey (1)
-
Auro, Maureen (1)
-
Baars, Oliver (1)
-
Baker, Alex R. (1)
-
Bakker, Karel (1)
-
Barraqueta, Jan-Lukas Menzel (1)
-
Basak, Chandranath (1)
-
Baskaran, Mark (1)
-
Bates, Nicholas R. (1)
-
Bauch, Dorothea (1)
-
Behrens, Melanie K. (1)
-
Black, Erin (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Many explanations for Eocene climate change focus on the Southern Ocean—where tectonics influenced oceanic gateways, ocean circulation reduced heat transport, and greenhouse gas declines prompted glaciation. To date, few studies focus on marine vertebrates at high latitudes to discern paleoecological and paleoenvironmental impacts of this climate transition. The Tertiary Eocene La Meseta (TELM) Formation has a rich fossil assemblage to characterize these impacts;Striatolamia macrota, an extinct (†) sand tiger shark, is abundant throughout the La Meseta Formation. Body size is often tracked to characterize and integrate across multiple ecological dimensions. †S. macrotabody size distributions indicate limited changes during TELMs 2–5 based on anterior tooth crown height (n = 450, mean = 19.6 ± 6.4 mm). Similarly, environmental conditions remained stable through this period based on δ18OPO4values from tooth enameloid (n = 42; 21.5 ± 1.6‰), which corresponds to a mean temperature of 22.0 ± 4.0°C. Our preliminaryεNd(n = 4) results indicate an early Drake Passage opening with Pacific inputs during TELM 2–3 (45–43 Ma) based on single unit variation with an overall radiogenic trend. Two possible hypotheses to explain these observations are (1) †S. macrotamodified its migration behavior to ameliorate environmental changes related to the Drake Passage opening, or (2) the local climate change was small and gateway opening had little impact. While we cannot rule out an ecological explanation, a comparison with climate model results suggests that increased CO2produces warm conditions that also parsimoniously explain the observations.more » « less
-
Schlitzer, Reiner; Anderson, Robert F.; Dodas, Elena Masferrer; Lohan, Maeve; Geibert, Walter; Tagliabue, Alessandro; Bowie, Andrew; Jeandel, Catherine; Maldonado, Maria T.; Landing, William M.; et al (, Chemical Geology)
An official website of the United States government
